Status of Run 2b Silicon

Joe Incandela
University of California, Santa Barbara
CDF Run 2b Silicon Group Leader

Fermilab PAC Meeting

April 22, 2001

Outline

- General Considerations
- Physics
- Basic Plan
- Project Status
- Schedule & Cost

General Considerations

Longevity

- ➤ The Run 2a Silicon detector cannot be guaranteed to last 15 fb⁻¹
 - We will monitor the detector carefully to better understand the lifetimes of each layer (covered in more detail below).

Scale

- ➤ We are preparing to build a replacement for Layer 00 and SVXII
 - There is no other sensible option

Primary Goals

- ➤ Retain current capabilities with a more robust and simple system
 - This will also help us to meet our schedule

Secondary Goals

- ➤ Enhance performance
 - Where possible without significant schedule risk or added cost.

Silicon Tracking

- Silicon is a key tracking device in CDF
 - ➤ In the region $1 \le |\eta| \le 2$ silicon is our <u>only</u> tracking.
 - I mpaired performance at large radius would mean
 - Loss of robustness and track purity
 - Loss of momentum resolution (which also degrades impact parameter info.)
 - Loss of extrapolation to end cap calorimeters would limit lepton coverage.
 - I mpaired performance at small radius would mean
 - Loss of impact parameter resolution and b tagging degradation
 - I mpaired performance at any radius
 - Loss of a track constraint which affects track purity.
 - Tracking improves jet energy measurements

Physics

Acceptance - Trileptons

Higgs and SUSY sensitivity depends mainly on 3 things:

B Tagging

- For W/Z+H, H → bb the ability to tag b jets in 1 ≤ |η | ≤ 2 increases acceptance in this channel by 70%. For ttH the acceptance increase is even larger.
- High b tag efficiency is only relevant if tagging is pure.
 - minimize light quark, gluon jet tags
 - distinguish charm from bottom

Lepton id

- For SUSY channels with 3 leptons the ability to track and determine particle momenta in $1 \le |\eta| \le 2$ accounts for the majority of our sensitivity.

Energy resolution

- Jet energy and missing E_T resolution need to be optimal.

Run 2a Performance I ssues

Material

- ➤ Could impair standalone silicon tracking.
 - Loss of even one layer of SVXII significantly increases the fake rate for SVXII track primitives. (1996 TDR track studies).

Stereo

- ➤ Ambiguities in 90 degree layers increase inversely with radius
- ➤ Stereo IP resolution is not very comparable to axial resolution

Resolution

- ➤ Substantial fraction of tracks in high energy b jets merge in LOO
 - Degrades IP resolution

Basic Plan

- Replace SVXII and Layer 00
 - 6 new axial layers
 - 2-3 90° stereo layers
 - 3 1.2° stereo layers
- Simplify for speed & cost
 - Single-sided (SS) silicon & hybrids
 - Easier to procure at lower cost
 - No hybrids mounted on silicon
 - Simpler module fabrication, fewer electronics/noise issues.
 - Universal types
 - 2 hybrid types instead of 12
 - Minimum number of ladder types
 - Increase radial spread of layers
 - Greatly simplifies mechanical supports and assembly

- No optical components in DAQ
 - Reduces power consumption and cooling needs
- No beryllium bulkheads
 - Eliminates a costly, long lead time item
- Automatic Improvements
 - Material in tracking region
 - No port cards (~4% X₀)
 - ► No hybrids (~1.5 % X₀ per layer)
 - More uniform radial distribution
 - No large gap between ISL and next innermost layer
 - Additional layer near ISL provides a strong standalone tracking anchor
 - Increased Acceptance
- Also under consideration
 - small radius 90° layer

Progress & Plans

Work in Progress

- ➤ Layout & performance
- ➤ Mechanics & cooling
- ➤ Chips & Hybrids
- ➤ DAQ & Power Supplies
- ➤ Silicon & Lightweight cables

Planning

- ➤ Organization
- ➤ R&D/Prototyping
- ➤ Performance studies & Finalizing the design
- Radiation monitoring
- ➤ Schedule & Cost

Layout: Current thoughts*

Outer region: Tracking group - 3 layers made up of Axial + Shallow stereo (1.2º - 2.5º) - 1.2 m long - optimizing strip length & stereo angle Tracking layers - 50/100 μm pitch/readout Operate silicon at 0-10 C Inner region: Optimizing now - Two 0°/90° layers intermediate strips Smaller pitch ▶ 0.8 m long - High resolution layer Vertexing layers Layer 00 replacement ► 90° layer under study High resolution layer - Silicon must be kept cold (-10 C) Run 2b versus Run 2a Beam (z axis) 2 vs 12 hybrid designs 4 -6 vs 12 silicon masks * under study...

Layout Performance

Outer layers

- provide reasonable layer hit resolution
 - $\sigma_z \sim 500 \ \mu \text{m}$, $\sigma_\phi \sim 15 \ \mu \text{m}$
- ➤ Combined with ISL to provide good pointing into inner layers
 - σ_z ~ 500 $\mu\text{m},~\sigma_{\phi}$ ~ 15 $\mu\text{m}~$ at a radius of 5 cm
- ➤ Combine with ISL for high purity
 - 3 large radius layers have been shown to be a powerful seed for tracking
 - Particularly useful in high luminosity environment
 - 5 total layers of shallow stereo provide relatively robust pattern recognition

Inner group

- Axial layers in the SVT
- ➤ Good focus of z tracking
 - Pointing to 2^{nd} layer ~60 μ m, pointing to 1^{st} layer ~30 μ m
- ➤ Stereo IP resolution closer to axial IP resolution
 - $\sigma_z \sim$ 20 μ m, $\sigma_\phi \sim$ 7 μ m

Material

x2 material reduction in the tracking region.

3D Versus 2D

Beneficial to physics

- ➤ Separation of hits which are merged in Layer 00
 - In high energy b jets up to 30% of b daughter hits are merged
 - less than 10% of these hits are closer than 250 μm in z (see figure).
- Could improve purity and efficiency

Acceptance

• Luminous region (" σ_z ")

- ➤ Run 2a: σ ~ 30 cm
- ➤ Run 2b: Smaller w/crossing angle

I mpact on physics

- ➤ Retain or increase 'length'
 - Acceptance for second taggable b jet in top increases from ~70% to 89% (25% relative increase)
 - ~ same improvement for WH
 - ~ double this for Htt

Impact on cost

- Retain current η coverage
 - Little or no savings in Silicon cost
 - Some few % savings elsewhere

Studies in Progress

- Study grouped formed meeting weekly
 - ➤ Short term: "Parametric" studies
 - 3D impact parameter resolutions
 - pointing resolutions (linking of different radial groups)
 - as a function of radius
 - track density and overlaps
 - ghosting versus shallow stereo angle & strip length
 - ➤ Medium Term: Material modeling
 - Fully model the detector in Run 2 framework
 - secondary production
 - tracking
 - ➤ Physics (for TDR this fall)
 - Benchmark modes (WH,ZH,ttH,SUSY)

Optimization

Mechanics

- CERN Visit: G.Derylo, M.Hrycyk, R.Plunket, P.Tipton, and J.Incandela
 - ➤ Extensive tours in mid-January
 - CMS engineering and prototyping work for the CMS silicon tracker
 - ATLAS engineering and prototyping work for pixels
 - ➤ Learned a lot about materials, cooling concepts etc.
 - CMS will use C₆F₁₄ which allows them to cool to -25 C
 - maybe something we should at least consider ?
 - ATLAS pixels taught us that cooling is a major consideration.
 - 5 years of R&D on two phase cooling system at CERN
 - ► Beautiful low-mass, self-regulating system.
- UCSB involvement: D.Hale and S.Kyre have joined the design team.
 - ➤ Valuable Babar & CLEO low-mass, high precision mechanics experience.
- Current activities:
 - ➤ Meet bi-monthly with Mike Hyrcyk and a small handful of top experts from CDF silicon community
 - Converging fast on simple, easy to build mechanical designs
 - Established the relevant ranges of possibilities for specifications

Outer Layers

- The outer layer system is rapidly approaching an engineered design
 - ➤ Specify sensors this summer, place order in October for winter delivery
 - ➤ We will start prototyping mechanical designs this summer

Innermost Layers

- Plan to rebuild Layer 00
- Studying small radius 90° layer
 - ➤ improved impact parameter resolution in z
 - Does it buy a lot?
 - ➤ simple ϕ segmentation for easier construction
 - Can it be done with low cost and effort?

SVX4 Chip

- ➤ DØ & CDF same architecture
- ➤ 0.25 µm CMOS
 - rad-hard to > 30 Mrads
 - confidence in simulation models
 - commercial foundries
- ➤ TSMC analog test chip received in march
 - Tests agree w/simulation results to better than 10%
 - ▶ 1,750e- for 40pF load
- ➤ Specifications complete
 - CDF & D0 physicists have agreed upon a detailed list.
 - 1 polarity simplifies design
- ➤ Roughly on schedule

Hybrids

Layer 00 technology

- Combine screening with etching to achieve high density
- ➤ Smaller more compact hybrids
- Footprint for outer layers done
 - ➤ 53.2 mm wide
 - ➤ 4 chips
 - ➤ Al₂O₃ or BeO substrate
 - 0.015-0.025 inches thick
- Inner layer prototypes
 - ➤ Same as outer but 2 chips
- Plans
 - Complete layout and prototype this summer using existing SVX3D chips

DAQ& PS

DAQ

- ➤ Basic plan
 - Eliminate DOI Ms & Merge portcards
 - Gang hybrids as needed
- ➤ Motivation
 - DOIMs are a lot of will die
 - Reduction in complexity
- ➤ Power Supplies
 - Extend support contracts with CAEN.
 - More high bias supplies

Silicon & Cables

Silicon

- ➤ 2 mask sets for the outer layers and 2 4 sets for inner.
- ➤ No strong need to prototype for radiation testing.
 - LHC has done extensive testing
 - Layer 00 will be a useful gauge
- ➤ Have quotations from HPK.
 - Updating now and negotiating a production schedule

Lightweight Cables

- ➤ Just received a Layer 00 cable from Keycom (Japan)
 - Even lighter than those in LOO
 - Cost looks reasonable
 - ▶ 4k\$ for masks and \$600-700 per sheet (5 cables ?)
 - Now working with Keycom to understand yield and schedule information.
 (Plan to visit Japan this summer or fall)

Organization

- Run2b Silicon Leadership and Guidance
 - ➤ JI will lead group in CYO1
 - ➤ Formed internal steering committee of top CDF experts
 - Determine the initial specifications with emphasis on simplicity for cost and schedule containment
 - Will review any proposed changes to design
 - Insure that we do not complicate the design for small improvements.
 - ➤ Two group co-leaders being sought now.
 - Will work with JI this year and take over in CYO2

R&D/Prototyping

- Plan to build a few ladders
 - ➤ Silicon (existing LOO or LHC)
 - ➤ Lightweight signal cable (have prototype LOO from Keycom)
 - Hybrid with existing chips (this summer/fall)
 - ➤ Mechanical support (design in progress)
- Plug into existing DAQ with "Run 2b Configuration"
 - ➤ Mother cable/board from hybrid to HDI (conceptual design)
 - ➤ Mini-portcard (design in progress)
 - ➤ Long HDI (existing ISL)
 - ➤ "Port-card" (existing)
- Resolves almost every open issue

Design Finalization

Performance Studies in progress

- ➤ For June PAC: Basic information studies, including ghosting, resolutions, material effects
- ➤ For Autumn TDR: Pattern recognition, object identification, physics impact

Autumn: Targets

- ➤ Better understanding of Run 2a performance, lifetimes
- ➤ Fully optimized design with physics justification
- ➤ Detailed initial designs of all components
- ➤ Prototype results for critical components
- Complete resource loaded schedule: all costs, cost bases, contingency analysis

Radiation Monitoring

Run 2a Dosimetry

- ➤ Cross-check other monitors
- ➤ Predict damage profiles

Positioning

- ➤ A fairly extensive system of monitors now in place
- ➤ Based on toy study with 3 source components: Uniform in space, Cylindrically Symmetric about beam, Spherically symmetric about IP

Status

- ➤ Mylar leaders installed
- ➤ Calibrations complete
- ➤ Holders loaded
- ➤ TLDs to be pulled later this year should help us understand our dose rates

Preliminary Cost Estimates

Item	Estimated Cost [k\$]	Contingency [k\$]	Total Cost [k\$]
SVX4*	150	75	225
Silicon	800	400	1200
Signal Cables	300	200	500
Hybrids	700	350	1050
Power Supplies & Crates	300	200	500
HDIs	150	75	225
P/J Cards	400	300	700
Beam pipe	200	100	300
Mechanics & Cooling	600	400	1000
TOTAL M&S	3,600	2,100	5,700

Estimates (expected to change)

- ➤ Silicon, Hybrids, Signal Cables, SVX4 costs reasonably well understood
- ➤ Other estimates uncertain and will be refined in upcoming weeks

Additional Funding sources

- ➤ Japanese will contribute strongly to Silicon and Signal Cables
- ➤ Hope for I talian help on Power Supplies, SVX4 and Silicon
- University support in FY01 for R&D (see next page)

^{*} Assumes half of the SVX4 chip cost is accounted by D0

FY01 R&D

Item	Estimated Cost [k\$]	US Cost [k\$]
SVX4*	?	?
Silicon	0	0
Signal Cables	40	0
Hybrids & Cables	40	40
Power Supplies & Crates	0	0
P/J Cards	40	40
Beam pipe	0	0
Mechanics & Cooling	50	50
TOTAL M&S	170	130

- Rough Estimates
- University funds may be available
- Does not include SVX4 development costs

Summary

- Will replace SVXII and L00
- Run 2b system will be simple, robust and powerful
 - ➤ Eliminate port-cards
 - ➤ Single sided silicon and lightweight signal cables
 - ➤ Factor of 2 reduction in material in tracking region
 - ➤ Performance & acceptance expected to improve
 - ➤ 3D vertexing under study
- Focus on simplicity
 - Cost and schedule containment
- Minimal R&D
- Target:
 - ➤ Design by end of FY01
 - ➤ Start production in FY02

Quantities and Costs

Layout Table	Phi Modularity		Length	Sensor Length	Z Modularity	Axial Radius	Stereo Radius	Stereo	Channels
Layer	Axial	Stereo	[mm]	[mm]		[mm]	[mm]	Config	
5	24	24	1200	100	12	170	160	shallow	147456
4	18	18	1200	100	12	130	125	shallow	110592
3	12	12	1200	100	12	95	90	shallow	73728
2	18	12	1000	83	12	55	60	shallow or 90	92160
1	12	8	1000	83	12	35	40	shallow or 90	61440
0	12	6	800	66	12	15	20	90 or none	55296

	Totals					
	Outer	Inner	L00	All	Chips	Channels
Sensors	1424	690	280	2394	4224	540672
Area [m^2]	7.55	1.72	0.28	9.54		

Installed Quantities													
Layer	A2 sensors	A1 Sensors	A0 Sensors	S2 Sensors	S1 Sensors	S0 Sensors	Chips	4 chip	2 chip	mini-pc	hdi-sets	jp card	ftm mods
5	288			288			1152	288		72	72	14	70
4	216			216			864	216		54	54	11	55
3	144			144			576	144		36	36	7	35
2		216			144		720		336	42	42	8	40
1		144			96		480		168	28	28	6	30
0			144			72	432		216	54	54	11	55
Installed quantities	648	360	144	648	240	72	4224	648	720	286	286	57	285
Spare %	0.1	0.15	0.3	0.1	0.15	0.3	0.5	0.1	0.1	0.3	0.3	0.2	0.2
Total Purchased	712	414	187	712	276	93	6336	712	792	371	371	68	342
Estimated Unit Cost	475	275	275	475	533	533	35	600	400	265	300	300	265
Total Cost	338200	113850	51425	338200	147200	49600	221760	427200	316800	98315	111300	20400	90630

More Details

SIGNAL CABLES													
Layer	W5	W4	W3	W2	W1	W0	N5	N4	N3	N2	N1	N0	
5		96		96		96							
4		72		72		72							
3		48		48		48							
2							48	120	48	120	48	120	
1							32	80	32	80	32	80	
0							24	72	24	72	24	72	
Installed		216		216		216	104	272	104	272	104	272	
Spare %		50%		50%		50%	50%	50%	50%	50%	50%	50%	
Total Purchased		324		324		324	156	408	156	408	156	408	
Est. Unit Cost		\$333		\$166		\$66	\$133	\$133	\$111	\$111	\$83	\$66	
Total Cost		\$107,892		\$53,784		\$21,384	\$20,748	\$54,264	\$17,316	\$45,288	\$12,948	\$26,928	\$360,552

Cost Estimate

TOTALS			
Item	Cost	Contingency	Sum
Sensors	1,038,475	519,238	1,557,713
Chips	221,760	110,880	332,640
2 Chip Hybrids	316,800	158,400	475,200
4 Chip Hybrids	427,200	213,600	640,800
mini-pc	98,315	49,158	147,473
hdi sets	111,300	55,650	166,950
jp Cards	20,400	10,200	30,600
FTM mods	90,630	45,315	135,945
Power Supplies & Crates	300,000	200,000	500,000
Beam pipe	200,000	100,000	300,000
Mechanics & Cooling	600,000	400,000	1,000,000
Cables	360,552	252,386	612,938
Totals	3,785,432	2,114,826	5,900,258

• To be a bit more conservative – assume the inner layers are 90 degree stereo double metal detectors

Conservative Hybrids Model

Conservative Totals			
Item	Cost	Contingency	Sum
Sensors	1,038,475	519,238	1,557,713
Chips	221,760	110,880	332,640
2 Chip Hybrids	553,176	165,953	719,129
4 Chip Hybrids	732,046	219,614	951,659
mini-pc	98,315	49,158	147,473
hdi sets	111,300	55,650	166,950
jp Cards	20,400	10,200	30,600
FTM mods	90,630	45,315	135,945
Power Supplies & Crates	300,000	200,000	500,000
Beam pipe	200,000	100,000	300,000
Mechanics & Cooling	600,000	400,000	1,000,000
Cables	360,552	252,386	612,938
Totals	4,326,654	2,128,393	6,455,046

Cost Basis

- Vendor quotes in many cases or used Run 2a costs
 - ➤ Silicon HPK quote
 - ➤ Hybrids LBL experience in Run 2a + Vendor quotes for substrates
 - ➤ Cables quote from Keycom Corp. (NRE in contingency)
 - ➤ HDIs- Based on actual cost of ISL 1.2 m long HDIs
 - served similar purpose but twice as long as those for Run 2b
 - ➤ Other DAQ items estimated by FNAL Electronics group
 - ➤ Beampipe estimate with contingency is twice the Run 2a cost
 - ➤ Power supplies based on Run 2a ISL and LOO supply & crate costs
 - ➤ SVX4 cost is only for final CDF production run. It does not include the NRE costs being incurred in the joint SVX4 design project.
- 50-70% contingency on all tasks

Comments

- Areas where we are uncertain
 - ➤ Signal Cables (but we assumed 50% yield and 50% contingency)
 - ➤ Mechanics & Cooling (assumed 600k\$ and 400k\$ contingency)
 - No Beryllium parts
 - Simple low mass cylinders and support flanges
 - Limited fixturing
 - ► Can re-use all of our installation fixtures for installation in ISL
 - Don't know if we will need to increase the capacity of our chiller plant
 - ► Chillers are around 10k\$. The whole system is of order 100k\$?
- We'll refine this somewhat over the next month
 - ➤ Mainly work on signal cables and mechanics costs.
 - ➤ Update quotes on silicon
 - ➤ Try to make up some things...